Registration no:					

Total Number of Pages: 2

<u>MCA</u> MCC103

1st Sem MCA Regular/ Back Examination – 2015-16 SUBJECT NAME: DISCRETE MATHEMATICS BRANCH(S): MCA Time: 3 Hours Max marks: 70 Q.CODE:T822

Answer Question No.1 which is compulsory and any five from rest. The figures in the right hand margin indicate marks.

Q1		Answer the following questions:	(2 x 10)
	a)	Find the conjuction of the statement given below & specify	
		the truth value.	
		p:Every person believes in God,	
		q:No body beliefs false.	
	b)	Give an example of a relation which is symmetric but not	
		Reflexive and Transitive.	
	c)	Draw the Hasse diagram(D_{24} ,).	
	d)	Write the recurrence relation of the Fibonacci sequence	
		(1,1,2,3,5,8,11).	
(e)	When a relation said to be Reflexive, Symmetric and	
		Transitive ? Give an example.	
	f)	Define Binary Tree & complete Binary Tree.	
	g)	Does a 3 regular graph on 14 vertices exist ? What can you	
		say on 17 vertices ?	
]	h)	Define the chromatic Number. What is the Chromatic number corresponding to a polygon of 10 sides?	
	i)	Do you agree $(ab)^{-1} = a^{-1}b^{-1}$ for a group which contain a & b	
	1)	?Justify your answer.	
	j)	Do you think that all cyclic groups are abelian? .Explain.	
Q2	a)	Prove by Method of Induction that $6^{2n+2}+7^{2n+1}$ is divisible	(5)
		by 43 for each positive integer 'n'.	
	b)	Solve the recurrence relation $a_n-5a_{n-1}+6a_{n-2} = 0$ with initial condition $a_0=2$, $a_1=5$.	(5)
• •		1	<i>(</i> _)
Q3	a)	Prove that a reltion R on a set A is Symmetric iff $R=R^{-1}$.	(5)
	b)	show that $pv(q\Lambda r) \leftrightarrow (pvq)\Lambda(pvr)$ is a tautology.	(5)

Q4 Write prim's algorithm to find the minimal spanning tree of (10) a graph. Using this algorithm find the minimal spanning tree of the following graph.

- Q5 a) Prove that an undirected graph possesses an Eulerian circuit (5) iff it is connected & its vertices are all of even degree.
 - b) Show that a simple complete graph with n vertices has (5) $\frac{n(n-1)}{2}$ edges.
- Q6 a) Prove that for any positive integer 'n' if G is connected (5) graph with 'n' & (n-1) edges then G is a tree.
 - b) A simple graph G has a spanning tree iff G is connected. (5)
- Q7 a) Prove that H be a subgroup of a group G & a ,b belongs to (5) G then aH=bH iff $a^{-1}b \in H$.
 - b) In $any(L, \leq)$ for each a,b,c belongs to L then show that (5) $a\Lambda(bvc) \geq (a\Lambda b)v(a\Lambda c).$
- Q8 Write Short Notes

(5 x 2)

- a) Kruskal's Algorithm.
- b) Dijkastra's Algorithm.
- c) Hamiltonian paths & Cycles.
- d) Boolean Algebra & its postulates.